Problems Set: Linear Programming

Exercise 1. Graphical Solution to an LP Problem

1.1 Solve the following LP problem graphically.

$$
\begin{array}{ll}
\text { Max } z=4 x+6 y \\
\text { s.t. } & x+2 y \leq 8 \\
& 5 x+4 y \leq 20 \\
& x, y \geq 0
\end{array}
$$

Exercise 2. LP Formulation

2.1 The Chris Beehner Company manufactures two lines of designer yard gates, called model A and model B. Every gate requires blending a certain amount of steel and zinc; the company has available a total of $25,000 \mathrm{lb}$ of steel and $6,000 \mathrm{lb}$ of zinc. Each model A gate requires a mixture of 125 lb of steel and 20 lb of zinc, and each yields a profit of $\$ 90$. Each model B gate requires 100 lb of steel and 30 lb of zinc and can be sold for a profit of $\$ 70$. Find by LP the best production mix of yard gates.
a) Determine the decision variable(s)
b) Write out the constraint(s)
c) What is the objective function?

Exercise 3. Integer Programming

3.1 Porter Investments needs to develop an investment portfolio for Mrs. Singh from the following list of possible investments:

Investment	Cost	Expected Return
A	$\$ 10,000$	$\$ 700$
B	$\$ 12,000$	$\$ 1,000$
C	$\$ 3,500$	$\$ 390$
D	$\$ 5,000$	$\$ 500$
E	$\$ 8,500$	$\$ 750$
F	$\$ 8,000$	$\$ 640$
G	$\$ 4,000$	$\$ 300$

Mrs. Singh has a total of $\$ 60,000$ to invest. The following conditions must be met:
(1) If investment F is chosen, then investment G must also be part of the portfolio,
(2) at least four investments should be chosen, and
(3) of investments A and B, exactly one must be included.

Determine which stocks should be included in Mrs. Singh's portfolio.
a) Determine the decision variable(s)
b) Write out the constraint(s)
c) What is the objective function?

Hints
Define decision variables
$x_{i}=\left\{\begin{array}{l}1 \text { The Investment } i \text { is selected } \\ 0 \\ \text { Otherwise }\end{array} \forall(\right.$ for all $) i=1, \ldots, 7$
The constraints
(1) If investment F is chosen $\left(x_{6}=1\right)$, then investment G must also be part of the portfolio ($x_{7}=$ 1),

$$
x_{6} \leq x_{7}
$$

(2) at least four investments should be chosen, and
$\sum_{i=1}^{7} x_{i}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \geq 4$
(3) of investments A and B, exactly one must be included.

$$
x_{1}+x_{2}=1
$$

4) a total of $\$ 60,000$ to invest

Define c_{i} as the cost for investment i ,
$\sum_{i=1}^{7} c_{i} x_{i}=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{7} x_{7} \leq 60,000$
5)
$x_{i}=\left\{\begin{array}{l}1 \text { The Investment } i \text { is selected } \\ 0 \quad \text { Otherwise }\end{array} \forall i=1, . ., 7\right.$

Objective function

Maximize the profits:

The profit of investment is r_{i}
$\max \sum_{i=1}^{7} r_{i} x_{i}=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{7} x_{7}$

Solutions

Exercise 1. Graphical Solution to an LP Problem

1.1 Solve the following LP problem graphically.

$$
\begin{array}{ll}
\text { Max } z=4 x+6 y \\
\text { s.t. } & x+2 y \leq 8 \\
& 5 x+4 y \leq 20 \\
& x, y \geq 0
\end{array}
$$

Exercise 2. LP Formulation

2.1 The Chris Beehner Company manufactures two lines of designer yard gates, called model A and model B. Every gate requires blending a certain amount of steel and zinc; the company has available a total of $25,000 \mathrm{lb}$ of steel and $6,000 \mathrm{lb}$ of zinc. Each model A gate requires a mixture of 125 lb of steel and 20 lb of zinc, and each yields a profit of $\$ 90$. Each model B gate requires 100 lb of steel and 30 lb of zinc and can be sold for a profit of $\$ 70$. Find by LP the best production mix of yard gates.
a) Determine the decision variable(s)
x : number of model A to produce
y : number of model B to produce
b) Write out the constraint(s)

$$
\begin{gathered}
125 x+100 y \leq 25000 \\
20 x+30 y \leq 6000 \\
x, y \geq 0
\end{gathered}
$$

c) What is the objective function?

$$
\max Z=90 x+70 y
$$

2.2 A craftsman named William Barnes builds two kinds of birdhouses, one for wrens and a second for bluebirds. Each wren birdhouse takes 4 hours of labor and 4 units of lumber. Each bluebird house requires 2 hours of labor and 12 units of lumber. The craftsman has available 60 hours of labor and 120 units of lumber. Wren houses yield a profit of $\$ 6$ each, and bluebird houses yield a profit of $\$ 15$ each.
a) Determine the decision variable(s)
x : number of birdhouses for wrens
y : number of birdhouses for bluebirds
b) Write out the constraint(s)

Hours Constraint: $4 x+2 y \leq 60$
Lumber Constraint: $4 x+12 y \leq 120$
$x, y \geq 0$
c) What is the objective function?

$$
\max Z=6 x+15 y
$$

Exercise 3. Integer Programming

3.1 Porter Investments needs to develop an investment portfolio for Mrs. Singh from the following list of possible investments:

Investment	Cost	Expected Return
A	$\$ 10,000$	$\$ 700$
B	$\$ 12,000$	$\$ 1,000$
C	$\$ 3,500$	$\$ 390$
D	$\$ 5,000$	$\$ 500$
E	$\$ 8,500$	$\$ 750$
F	$\$ 8,000$	$\$ 640$
G	$\$ 4,000$	$\$ 300$

Mrs. Singh has a total of $\$ 60,000$ to invest. The following conditions must be met:
(1) If investment F is chosen, then investment G must also be part of the portfolio,
(2) at least four investments should be chosen, and
(3) of investments A and B, exactly one must be included.

Determine which stocks should be included in Mrs. Singh's portfolio.
a) Determine the decision variable(s)

$$
x_{i}=\left\{\begin{array}{c}
1 \text { Choose some investment } \\
0 \text { Not choose some investment }
\end{array} \forall i=1, \ldots, 7\right.
$$

b) Write out the constraint(s)

Denote c_{i} as the cost for each investment $\forall i=1, \ldots, 7$
(1) $x_{6} \leq x_{7}$
(2) $\sum_{i=1}^{7} x_{i} \geq 4$
(3) $x_{1}+x_{2}=1$
(4) $\sum_{i=1}^{7} c_{i} x_{i} \leq 60000$
(5) $x_{i}=0,1 \forall i=1, \ldots, 7$
c) What is the objective function?

Denote r_{i} as the expected return for each investment $\forall i=1, \ldots, 7$

$$
\max \mathrm{Z}=\sum_{i=1}^{7} r_{i} x_{i}
$$

